
Taking Entity Reconciliation Offline
Ryan Shaw

School of Information and Library Science
University of North Carolina at Chapel Hill

ryanshaw@unc.edu

Patrick Golden
School of Information and Library Science
University of North Carolina at Chapel Hill

ptgolden@live.unc.edu

ABSTRACT
Entity reconciliation—linking names or terms to identifiers
in external datasets—is a popular method of adding
standardized structured data to loosely structured
documents. Most approaches to entity reconciliation rely on
remote web services, requiring network access during the
reconciliation process. For use cases that rely on a “human
in the loop” (reconciling entities during the authoring
process), this requirement may be a problem. To address
this problem, we investigated the feasibility of offline entity
reconciliation against the Virtual International Authority
File. Offline entity reconciliation was implemented by
taking advantage of newly standardized browser storage
interfaces to store and query parts of this large dataset
locally. We present the results of this investigation and our
comparison of the performance, scalability, ease of
implementation, and cross-browser compatibility of the
various options for storing entity data locally.

Keywords
Linked data, name authorities, web interfaces.

INTRODUCTION
We first review the typical approaches taken to annotate
loosely structured text with structured data. We claim that
reconciliation against a database of entities is an attractive
approach for many use cases. However, most
implementations of reconciliation establish a dependency
on web services, making some use cases difficult to
support. We examine techniques for breaking this
dependency by storing and reconciling against entity data
locally. We present the results of a study in which we
implemented and tested offline reconciliation using several
combinations of operating systems, browsers, and local
storage technologies. The local storage technologies are
compared to one another in terms of ease of use, scalability,
and performance. We conclude with a discussion of the
implications of our study.

STRUCTURED DATA
Information professionals are well-acquainted with the
benefits of adding standardized structured data (e.g.
metadata) to loosely structured documents. Standardized
structured data can bring consistency and interoperability to

otherwise inconsistent and idiosyncratic documents, making
them amenable to consumption and manipulation through
generic tools. Faceted browsing and visualization are just
two specific examples of this.

While structured data can be authored directly using forms,
another approach is attractive when authors are willing to
re-use another author’s description of an entity (as in shared
cataloging), or when there is an external source of
structured data about the entities that can be exploited. For
example, the restaurants a food blogger reviews are likely
to be listed in a directory providing structured data. Medical
thesauri will have structured data related to the terms a
doctor uses in her notes. A place name gazetteer can
provide structured data related to a place name. In all these
cases an author need not re-enter this data but can simply
reconcile the name or term he used with the external data
source. Reconciliation involves an author linking a name or
term to an external identifier, thereby disambiguating it and
allowing him to gather structured data that others have
associated with that identifier (Maali et al., 2011).

Adding structured data to documents via reconciliation
against an external data source typically introduces a
dependency on web access. For use cases that cannot
tolerate sparse or dirty data, and which therefore adopt a
“human in the loop” model of reconciling entities during
the authoring process, the need to be constantly online may
be problematic. Consider the doctor making clinical
observations in unconnected rural areas, or the historian
taking research notes deep in an archive. Can adding
structured data via reconciliation during authoring be
feasible in these offline scenarios?

LOCAL STORAGE TECHNIQUES
The most basic approach to using browser storage for entity
reconciliation is to serialize and store an index structure that
is deserialized and loaded fully into memory upon page
load. In theory, this method could be used to store a small
entity index in cookies, but a better approach would be to
use the Web Storage API. The Web Storage API (Hickson,
2011) better known as localStorage, enables persistent
storage of key-value pairs. It is intended to be used to store
data that should persist across browser sessions and are too
large to be stored in cookies. Another option is to use the
newer File API, which provides FileSaver (Uhrhane, 2012)
and FileReader (Ranganathan, 2012) interfaces that can be

ASIST 2013, November 1-6, 2013, Montreal, Quebec, Canada.

used for writing data of arbitrary size to files on disk and
reading it back into memory.

An obvious limitation of in-memory approaches to offline
entity reconciliation is that the entire entity index must be
loaded into memory before it can be searched. This could
become a problem for very large indexes. The alternative is
to use a client-side database that can be indexed and queried
without loading all of the data into memory. The Web SQL
Database API (WebSQL) (Hickson, 2010) provides an
interface to an embedded SQLite relational database engine.
Thus it is essentially a standardization of the approach
already used by browser extensions such as Zotero (Cohen,
2008) that store data using Sqlite. The Indexed Database
API (IndexedDB) (Mehta, 2012) provides a low-level
interface to a non-relational object store and supports high-
performance querying of JavaScript objects (lists of key-
value pairs) via indexes. Values may themselves be objects,
enabling the storage of hierarchical structures. The various
browser implementations of IndexedDB are built on
different embedded databases; Internet Explorer uses the
Extensible Storage Engine, Firefox uses SQLite, and
Chrome uses LevelDB (Powell, 2012).

EVALUATION FRAMEWORK
To evaluate the suitability of these various technologies for
implementing offline entity reconciliation, we built a small
testing framework.1 To provide a realistic test of entity
reconciliation, we drew upon a popular source of identifiers
for persons, places, and organizations: the Virtual
International Authority File (Loesch, 2011). The VIAF data
is a set of “clusters” of related records from various
international authority files. Each cluster represents a single
entity such as a personal identity, corporate body, or
geographic place. Working from a recent (February 2013)
dump of the VIAF data, we produced a JSON file with an
identifier, primary name, and array of alternate names for
each entity. We ran our evaluations using JSON arrays of

1 Testing tool and full results data at
http://ptgolden.github.io/browser-storage/, source
code at https://github.com/ptgolden/browser-storage.

varying size consisting of the first 10K, 50K, 100K, and
990K records respectively. To implement reconciliation we
tokenized all the names of each entity and added the array
of tokens to each JSON object; all matching between
queries and entities was done using this array of tokens, and
thus all of our various implementations returned identical
entity sets for the same query.

To test each reconciliation implementation we issued a
series of queries simulating those that would be generated
by an autocompletion interface. Each query was executed
five times and the average retrieval time was recorded.
Retrieval time included not just the time required to identify
matching entities, but also the time required to access the
matching properties (as would be needed to display
feedback in a reconciliation interface).

RESULTS
Because JavaScript engines and implementations of the
various APIs vary across browsers, we ran our tests on a
variety of combinations of device type, operating system,
and browser. Table 1 summarizes current browser support
for the various storage technologies we tested.2 In this
section we present a comparison of the APIs along the axes
of ease of use, scalability, and performance.

Ease of Use
localStorage is straightforward to use; one uses
setItem(key, value) to store data and getItem(key)
to retrieve it. Querying (beyond simple exact key matching)
must be implemented in JavaScript, but for data small
enough to be stored in localStorage a simple loop
through the data checking for matches is very fast. The File
API is similar to file I/O APIs provided by many other
standard libraries, but using it is far more complex than
using localStorage. One must be prepared to monitor
progress and handle a variety of errors that might occur
when reading or writing files. WebSQL should be familiar
to developers who are accustomed to the relational database
paradigm and know SQL; whether that familiarity breeds
fondness or contempt will depend on the programmer.
IndexedDB, on the other hand, has a very different kind of
interface that is unfamiliar to many Web developers. This
unfamiliarity has resulted in many complaints about its
understandability and usability (for a sampling see Caceres,
2013). The designers of IndexedDB have countered this
criticism by pointing out that IndexedDB is intended to be a
powerful but low-level API and that they expect more user-
friendly APIs to be layered on top of it, much as jQuery and
other JavaScript libraries emerged to mediate between
programmers and the low-level DOM APIs.

2 See http://caniuse.com for more details.

Local storage
technology Browser support

Web
Storage API Supported by all major browsers

File API File writing only supported in Chrome

Web SQL
Database API

Not supported by Internet Explorer or
Firefox

Indexed
Database API

Not yet supported by Safari or iOS
Safari; only partially supported by
Internet Explorer

Table 1. Browser support for local storage.

Scalability
How much data can be stored locally using these methods?
The Web Storage specification recommends a “mostly
arbitrary limit of five megabytes” (Hickson, 2011), which
the browsers we tested enforced. The other APIs do not
impose any hard limits on the amount of data that can be
stored, but typically the user must give permission to a
website wishing to store more than a small amount of data.
In our tests, storing the 10K dataset using WebSQL resulted
in a 3MB file on disk in Chrome and a 5MB file on disk in
Safari. The larger datasets either froze or crashed Chrome
and Safari when using WebSQL. IndexedDB fared better:
we were able to store the 100K dataset in all the browsers
supporting it. In the non-mobile versions of Chrome we
were able to store the 990K dataset using IndexedDB
(resulting in a 726M file on disk). We were also able to
load the 990K dataset into memory using the non-mobile
browsers; although this is too much data to be stored using
localStorage it could conceivably be serialized to and
read from a file using the File API. (On the mobile
browsers the 990K dataset could not be read into memory
due to a lack of sufficient RAM.)

Performance
IndexedDB also outperformed the other storage methods in
terms of query processing time; here we just present some
general findings. Figure 1 compares the retrieval times
among different mobile browser storage methods for
queries of various lengths (result sets of various sizes) on
the 10K dataset. All the methods performed well on this
small dataset, returning results in under a second. Overall,
WebSQL retrieval was the slowest (and particularly slow in
Chrome on Android). In-memory data access was
consistently fast. The two IndexedDB implementations
were the fastest—but only for the smaller result sets.
Iterating over the retrieved results using the IndexedDB
cursor is slow since the result value objects are created
lazily as they are accessed. This can negatively impact
retrieval performance when there are lots of results. We
observed a similar pattern of performance among non-
mobile browsers; see Figure 2 for a comparison of browsers
running on a Macbook Pro. (We did not observe
significantly different performance by Chrome and Firefox
on Linux or Internet Explorer on Windows.) IndexedDB's
performance advantage over looping through an in-memory
array was particularly clear with the 990K dataset.

0

25

50

75

100

125

ca (475) cap (14) capt (2) captain b (1)

re
tri

ev
al

 ti
m

e
in

 m
s

query (# of results)

WebSQL OSX 10.8.3 Chrome 26
in-memory OSX 10.8.3 Firefox 20
WebSQL OSX 10.8.3 Safari 6.0.3
in-memory OSX 10.8.3 Chrome 26
in-memory OSX 10.8.3 Safari 6.0.3
IndexedDB OSX 10.8.3 Firefox 20
IndexedDB OSX 10.8.3 Chrome 26

Figure 2: Retrieval times on a MacBook Pro.

0

250

500

750

1000

ca (475) cap (14) capt (2) captain b (1)

re
tri

ev
al

 ti
m

e
in

 m
s

query (# of results)
WebSQL Android 4.2 Chrome 26
WebSQL iOS 6.1.2 Chrome 26
WebSQL iOS 6.1.2 Mobile Safari 6.1.2
in-memory iOS 6.1.2 Chrome 26
in-memory Android 4.2 Chrome 26
in-memory iOS 6.1.2 Mobile Safari 6.1.2
in-memory Android 4.2 Firefox 20
IndexedDB Android 4.2 Firefox 20
IndexedDB Android 4.2 Chrome 26

Figure 2: Retrieval times on mobile browsers.

DISCUSSION
Our experiments demonstrated that offline reconciliation
against a non-trivial entity set is feasible. Even on a mobile
device, tens of thousands of entity records can be locally
stored and queried quickly enough to provide an
autocompletion interface. On higher-powered devices such
as laptops, this can scale up to hundreds of thousand of
entity records. That is insufficient to store massive datasets,
such as the full VIAF dataset which includes approximately
27 million entities. But it is not necessary or even
necessarily desirable to locally cache that much data. The
majority of use cases involve interaction with only a subset
of entities. For example, one scholarly editing project with
which we are collaborating on this research has been in
operation for over three decades. During that time they have
recorded approximately 7,500 unique personal names in
their research database. Reconciliation against those names
could easily be provided offline. As another example, the
Medical Subject Headings (MeSH) thesaurus contains
26,853 descriptors and 214,000 supplementary concept
records. These too could be reconciled against offline.

For relatively small datasets (less than 5MB of data), we
recommend simply using localStorage to store a
JavaScript array that can be queried in memory. We found
that we could store identifiers, primary names, and alternate
names of 10,000 entities this way, and that simply looping
through the array provided fast querying even on mobile
devices. For larger datasets, we recommend using
IndexedDB. IndexedDB was the fastest of the methods we
investigated, and there are no hard limits on the amount of
data that can be stored. However very ambiguous
reconciliation queries (returning more than a thousand
matching entities) should be avoided when using
IndexedDB, due to the performance implications of
accessing that many records through the cursor. For
example in the case of an autocompletion interface, this
may mean not offering completion suggestions until the
user has typed at least three characters.

The performance comparison we conducted is, of course,
contingent on our implementations. It is possible that
WebSQL performance could be improved through better
indexing of the database and optimization of the query
used. In-memory querying might outperform IndexedDB if
we implemented a more efficient data structure such as a
trie rather than simply looping through an array. However,
it was not our intent to compare the most efficient possible
implementation of each method; rather we wanted to
compare the performance of the simplest and most
straightforward implementations. By that measure
localStorage for small amounts of data and IndexedDB
for larger amounts are the clear winners.

localStorage and IndexedDB also appear to be the safest
bets for cross-platform compatibility. localStorage is
already available in all modern browsers. IndexedDB is not
yet available in Safari, but the code is in the main WebKit

repository meaning that it is likely to be available soon.
And while the Internet Explorer implementation was not yet
complete enough for us to test it, we do not expect that
situation to persist given Microsoft's support of the
standard. WebSQL, on the other hand, will never be a
cross-platform solution, and it does not seem likely that the
file-writings parts of the File API will be either.

CONCLUSIONS
Reconciliation against a database of entities is an attractive
way to add structured data to text. Using local storage
techniques now available in web browsers, it is feasible to
store and reconcile against large collections of entity data.
When reconciliation does not require an always-on network
connection, it can be deployed in more scenarios, such as
when authors are writing offline. There is much to be said
for this decentralized approach, and we hope that the work
presented here helps to articulate it as an alternative to ever-
greater centralization in “the cloud.”

ACKNOWLEDGMENTS
We are grateful to the Andrew W. Mellon Foundation for
funding “Editorial Practices and the Web” and to Coleman
Fung for helping fund Patrick Golden.

REFERENCES
Caceres, M. (2013). IndexedDB, what were the issues?

http://lists.w3.org/Archives/Public/www-
tag/2013Feb/0003.html

Cohen, D. J. (2008). Creating scholarly tools and resources
for the digital ecosystem: Building connections in the
Zotero project. First Monday, 13(8).

Hickson, I. (2010). Web SQL Database.
http://www.w3.org/TR/2010/NOTE-webdatabase-
20101118/

Hickson, I. (2011). Web Storage.
http: //www.w3.org/TR/2011/CR-webstorage-20111208/

Loesch, M. F. (2011). The Virtual International Authority
File. Technical Services Quarterly, 28(2):255–256.

Maali, F., Cyganiak, R. & Peristeras, V. (2011). Re-using
cool URIs: Entity reconciliation against LOD hubs. In C.
Bizer, T. Heath, T. Berners-Lee, and M. Hausenblas,
(Ed.), WWW2011 Workshop on Linked Data on the Web.

Mehta, N., Sicking, J., Graff, E., Popescu, A. & Orlow, J.
(2012). Indexed Database API.
http://www.w3.org/TR/2012/WD-IndexedDB-20120524/

Powell, A. (2012). How the browsers store IndexedDB
data. http://www.aaron-powell.com/web/indexeddb-
storage

Ranganathan, A. & Sicking, J. (2012). File API.
http://www.w3.org/TR/2012/WD-FileAPI-20121025/

Uhrhane, E. (2012). File API: Writer.
http://www.w3.org/TR/2012/WD-file-writer-api-
20120417/

