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ABSTRACT 
Entity reconciliation—linking names or terms to identifiers 
in external datasets—is a popular method of adding 
standardized structured data to loosely structured 
documents. Most approaches to entity reconciliation rely on 
remote web services, requiring network access during the 
reconciliation process. For use cases that rely on a “human 
in the loop” (reconciling entities during the authoring 
process), this requirement may be a problem. To address 
this problem, we investigated the feasibility of offline entity 
reconciliation against the Virtual International Authority 
File. Offline entity reconciliation was implemented by 
taking advantage of newly standardized browser storage 
interfaces to store and query parts of this large dataset 
locally. We present the results of this investigation and our 
comparison of the performance, scalability, ease of 
implementation, and cross-browser compatibility of the 
various options for storing entity data locally. 
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INTRODUCTION 
We first review the typical approaches taken to annotate 
loosely structured text with structured data. We claim that 
reconciliation against a database of entities is an attractive 
approach for many use cases. However, most 
implementations of reconciliation establish a dependency 
on web services, making some use cases difficult to 
support. We examine techniques for breaking this 
dependency by storing and reconciling against entity data 
locally. We present the results of a study in which we 
implemented and tested offline reconciliation using several 
combinations of operating systems, browsers, and local 
storage technologies. The local storage technologies are 
compared to one another in terms of ease of use, scalability, 
and performance. We conclude with a discussion of the 
implications of our study. 

STRUCTURED DATA 
Information professionals are well-acquainted with the 
benefits of adding standardized structured data (e.g. 
metadata) to loosely structured documents. Standardized 
structured data can bring consistency and interoperability to 

otherwise inconsistent and idiosyncratic documents, making 
them amenable to consumption and manipulation through 
generic tools. Faceted browsing and visualization are just 
two specific examples of this. 

While structured data can be authored directly using forms, 
another approach is attractive when authors are willing to 
re-use another author’s description of an entity (as in shared 
cataloging), or when there is an external source of 
structured data about the entities that can be exploited. For 
example, the restaurants a food blogger reviews are likely 
to be listed in a directory providing structured data. Medical 
thesauri will have structured data related to the terms a 
doctor uses in her notes. A place name gazetteer can 
provide structured data related to a place name. In all these 
cases an author need not re-enter this data but can simply 
reconcile the name or term he used with the external data 
source. Reconciliation involves an author linking a name or 
term to an external identifier, thereby disambiguating it and 
allowing him to gather structured data that others have 
associated with that identifier (Maali et al., 2011). 

Adding structured data to documents via reconciliation 
against an external data source typically introduces a 
dependency on web access. For use cases that cannot 
tolerate sparse or dirty data, and which therefore adopt a 
“human in the loop” model of reconciling entities during 
the authoring process, the need to be constantly online may 
be problematic. Consider the doctor making clinical 
observations in unconnected rural areas, or the historian 
taking research notes deep in an archive. Can adding 
structured data via reconciliation during authoring be 
feasible in these offline scenarios? 

LOCAL STORAGE TECHNIQUES 
The most basic approach to using browser storage for entity 
reconciliation is to serialize and store an index structure that 
is deserialized and loaded fully into memory upon page 
load. In theory, this method could be used to store a small 
entity index in cookies, but a better approach would be to 
use the Web Storage API. The Web Storage API (Hickson, 
2011) better known as localStorage, enables persistent 
storage of key-value pairs. It is intended to be used to store 
data that should persist across browser sessions and are too 
large to be stored in cookies. Another option is to use the 
newer File API, which provides FileSaver (Uhrhane, 2012) 
and FileReader (Ranganathan, 2012) interfaces that can be 
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used for writing data of arbitrary size to files on disk and 
reading it back into memory. 

An obvious limitation of in-memory approaches to offline 
entity reconciliation is that the entire entity index must be 
loaded into memory before it can be searched. This could 
become a problem for very large indexes. The alternative is 
to use a client-side database that can be indexed and queried 
without loading all of the data into memory. The Web SQL 
Database API (WebSQL) (Hickson, 2010) provides an 
interface to an embedded SQLite relational database engine. 
Thus it is essentially a standardization of the approach 
already used by browser extensions such as Zotero (Cohen, 
2008) that store data using Sqlite. The Indexed Database 
API (IndexedDB) (Mehta, 2012) provides a low-level 
interface to a non-relational object store and supports high-
performance querying of JavaScript objects (lists of key-
value pairs) via indexes. Values may themselves be objects, 
enabling the storage of hierarchical structures. The various 
browser implementations of IndexedDB are built on 
different embedded databases; Internet Explorer uses the 
Extensible Storage Engine, Firefox uses SQLite, and 
Chrome uses LevelDB (Powell, 2012). 

EVALUATION FRAMEWORK 
To evaluate the suitability of these various technologies for 
implementing offline entity reconciliation, we built a small 
testing framework.1 To provide a realistic test of entity 
reconciliation, we drew upon a popular source of identifiers 
for persons, places, and organizations: the Virtual 
International Authority File (Loesch, 2011). The VIAF data 
is a set of “clusters” of related records from various 
international authority files. Each cluster represents a single 
entity such as a personal identity, corporate body, or 
geographic place. Working from a recent (February 2013) 
dump of the VIAF data, we produced a JSON file with an 
identifier, primary name, and array of alternate names for 
each entity. We ran our evaluations using JSON arrays of 

                                                             
1 Testing tool and full results data at 
http://ptgolden.github.io/browser-storage/, source 
code at https://github.com/ptgolden/browser-storage. 

varying size consisting of the first 10K, 50K, 100K, and 
990K records respectively. To implement reconciliation we 
tokenized all the names of each entity and added the array 
of tokens to each JSON object; all matching between 
queries and entities was done using this array of tokens, and 
thus all of our various implementations returned identical 
entity sets for the same query. 

To test each reconciliation implementation we issued a 
series of queries simulating those that would be generated 
by an autocompletion interface. Each query was executed 
five times and the average retrieval time was recorded. 
Retrieval time included not just the time required to identify 
matching entities, but also the time required to access the 
matching properties (as would be needed to display 
feedback in a reconciliation interface). 

RESULTS 
Because JavaScript engines and implementations of the 
various APIs vary across browsers, we ran our tests on a 
variety of combinations of device type, operating system, 
and browser. Table 1 summarizes current browser support 
for the various storage technologies we tested.2 In this 
section we present a comparison of the APIs along the axes 
of ease of use, scalability, and performance. 

Ease of Use 
localStorage is straightforward to use; one uses 
setItem(key, value) to store data and getItem(key) 
to retrieve it. Querying (beyond simple exact key matching) 
must be implemented in JavaScript, but for data small 
enough to be stored in localStorage a simple loop 
through the data checking for matches is very fast. The File 
API is similar to file I/O APIs provided by many other 
standard libraries, but using it is far more complex than 
using localStorage. One must be prepared to monitor 
progress and handle a variety of errors that might occur 
when reading or writing files. WebSQL should be familiar 
to developers who are accustomed to the relational database 
paradigm and know SQL; whether that familiarity breeds 
fondness or contempt will depend on the programmer. 
IndexedDB, on the other hand, has a very different kind of 
interface that is unfamiliar to many Web developers. This 
unfamiliarity has resulted in many complaints about its 
understandability and usability (for a sampling see Caceres, 
2013). The designers of IndexedDB have countered this 
criticism by pointing out that IndexedDB is intended to be a 
powerful but low-level API and that they expect more user-
friendly APIs to be layered on top of it, much as jQuery and 
other JavaScript libraries emerged to mediate between 
programmers and the low-level DOM APIs. 

                                                             
2 See http://caniuse.com for more details. 

Local storage 
technology Browser support  

Web  
Storage API Supported by all major browsers 

File API File writing only supported in Chrome 

Web SQL 
Database API 

Not supported by Internet Explorer or 
Firefox 

Indexed 
Database API 

Not yet supported by Safari or iOS 
Safari; only partially supported by 
Internet Explorer 

Table 1. Browser support for local storage. 



Scalability 
How much data can be stored locally using these methods? 
The Web Storage specification recommends a “mostly 
arbitrary limit of five megabytes” (Hickson, 2011), which 
the browsers we tested enforced. The other APIs do not 
impose any hard limits on the amount of data that can be 
stored, but typically the user must give permission to a 
website wishing to store more than a small amount of data. 
In our tests, storing the 10K dataset using WebSQL resulted 
in a 3MB file on disk in Chrome and a 5MB file on disk in 
Safari. The larger datasets either froze or crashed Chrome 
and Safari when using WebSQL. IndexedDB fared better: 
we were able to store the 100K dataset in all the browsers 
supporting it. In the non-mobile versions of Chrome we 
were able to store the 990K dataset using IndexedDB 
(resulting in a 726M file on disk). We were also able to 
load the 990K dataset into memory using the non-mobile 
browsers; although this is too much data to be stored using 
localStorage it could conceivably be serialized to and 
read from a file using the File API. (On the mobile 
browsers the 990K dataset could not be read into memory 
due to a lack of sufficient RAM.) 

Performance 
IndexedDB also outperformed the other storage methods in 
terms of query processing time; here we just present some 
general findings. Figure 1 compares the retrieval times 
among different mobile browser storage methods for 
queries of various lengths (result sets of various sizes) on 
the 10K dataset. All the methods performed well on this 
small dataset, returning results in under a second. Overall, 
WebSQL retrieval was the slowest (and particularly slow in 
Chrome on Android). In-memory data access was 
consistently fast. The two IndexedDB implementations 
were the fastest—but only for the smaller result sets. 
Iterating over the retrieved results using the IndexedDB 
cursor is slow since the result value objects are created 
lazily as they are accessed. This can negatively impact 
retrieval performance when there are lots of results. We 
observed a similar pattern of performance among non-
mobile browsers; see Figure 2 for a comparison of browsers 
running on a Macbook Pro. (We did not observe 
significantly different performance by Chrome and Firefox 
on Linux or Internet Explorer on Windows.) IndexedDB's 
performance advantage over looping through an in-memory 
array was particularly clear with the 990K dataset. 
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Figure 2: Retrieval times on a MacBook Pro. 
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Figure 2: Retrieval times on mobile browsers. 



 

DISCUSSION 
Our experiments demonstrated that offline reconciliation 
against a non-trivial entity set is feasible. Even on a mobile 
device, tens of thousands of entity records can be locally 
stored and queried quickly enough to provide an 
autocompletion interface. On higher-powered devices such 
as laptops, this can scale up to hundreds of thousand of 
entity records. That is insufficient to store massive datasets, 
such as the full VIAF dataset which includes approximately 
27 million entities. But it is not necessary or even 
necessarily desirable to locally cache that much data. The 
majority of use cases involve interaction with only a subset 
of entities. For example, one scholarly editing project with 
which we are collaborating on this research has been in 
operation for over three decades. During that time they have 
recorded approximately 7,500 unique personal names in 
their research database. Reconciliation against those names 
could easily be provided offline. As another example, the 
Medical Subject Headings (MeSH) thesaurus contains 
26,853 descriptors and 214,000 supplementary concept 
records. These too could be reconciled against offline.  

For relatively small datasets (less than 5MB of data), we 
recommend simply using localStorage to store a 
JavaScript array that can be queried in memory. We found 
that we could store identifiers, primary names, and alternate 
names of 10,000 entities this way, and that simply looping 
through the array provided fast querying even on mobile 
devices. For larger datasets, we recommend using 
IndexedDB. IndexedDB was the fastest of the methods we 
investigated, and there are no hard limits on the amount of 
data that can be stored. However very ambiguous 
reconciliation queries (returning more than a thousand 
matching entities) should be avoided when using 
IndexedDB, due to the performance implications of 
accessing that many records through the cursor. For 
example in the case of an autocompletion interface, this 
may mean not offering completion suggestions until the 
user has typed at least three characters. 

The performance comparison we conducted is, of course, 
contingent on our implementations. It is possible that 
WebSQL performance could be improved through better 
indexing of the database and optimization of the query 
used. In-memory querying might outperform IndexedDB if 
we implemented a more efficient data structure such as a 
trie rather than simply looping through an array. However, 
it was not our intent to compare the most efficient possible 
implementation of each method; rather we wanted to 
compare the performance of the simplest and most 
straightforward implementations. By that measure 
localStorage for small amounts of data and IndexedDB 
for larger amounts are the clear winners. 

localStorage and IndexedDB also appear to be the safest 
bets for cross-platform compatibility. localStorage is 
already available in all modern browsers. IndexedDB is not 
yet available in Safari, but the code is in the main WebKit 

repository meaning that it is likely to be available soon. 
And while the Internet Explorer implementation was not yet 
complete enough for us to test it, we do not expect that 
situation to persist given Microsoft's support of the 
standard. WebSQL, on the other hand, will never be a 
cross-platform solution, and it does not seem likely that the 
file-writings parts of the File API will be either. 

CONCLUSIONS 
Reconciliation against a database of entities is an attractive 
way to add structured data to text. Using local storage 
techniques now available in web browsers, it is feasible to 
store and reconcile against large collections of entity data. 
When reconciliation does not require an always-on network 
connection, it can be deployed in more scenarios, such as 
when authors are writing offline. There is much to be said 
for this decentralized approach, and we hope that the work 
presented here helps to articulate it as an alternative to ever-
greater centralization in “the cloud.” 
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